Population Genetics of an Ecosystem-Defining Reef Coral Pocillopora damicornis in the Tropical Eastern Pacific
نویسندگان
چکیده
BACKGROUND Coral reefs in the Tropical Eastern Pacific (TEP) are amongst the most peripheral and geographically isolated in the world. This isolation has shaped the biology of TEP organisms and lead to the formation of numerous endemic species. For example, the coral Pocillopora damicornis is a minor reef-builder elsewhere in the Indo-West Pacific, but is the dominant reef-building coral in the TEP, where it forms large, mono-specific stands, covering many hectares of reef. Moreover, TEP P. damicornis reproduces by broadcast spawning, while it broods mostly parthenogenetic larvae throughout the rest of the Indo-West Pacific. Population genetic surveys for P. damicornis from across its Indo-Pacific range indicate that gene flow (i.e. larval dispersal) is generally limited over hundreds of kilometers or less. Little is known about the population genetic structure and the dispersal potential of P. damicornis in the TEP. METHODOLOGY Using multilocus microsatellite data, we analyzed the population structure of TEP P. damicornis among and within nine reefs and test for significant genetic structure across three geographically and ecologically distinct regions in Panama. PRINCIPAL FINDINGS/CONCLUSIONS We detected significant levels of population genetic structure (global R(ST) = 0.162), indicating restricted gene flow (i.e. larvae dispersal), both among the three regions (R(RT) = 0.081) as well as within regions (R(SR) = 0.089). Limited gene flow across a distinct environmental cline, like the regional upwelling gradient in Panama, indicates a significant potential for differential adaptation and population differentiation. Individual reefs were characterized by unexpectedly high genet diversity (avg. 94%), relatively high inbreeding coefficients (global F(IS) = 0.183), and localized spatial genetic structure among individuals (i.e. unique genets) over 10 m intervals. These findings suggest that gene flow is limited in TEP P. damicornis populations, particularly among regions, but even over meter scales within populations.
منابع مشابه
Interspecific hybridization and restricted trans-Pacific gene flow in the Tropical Eastern Pacific Pocillopora.
Coral reefs in the Tropical Eastern Pacific (TEP) are among the most isolated in the world. This isolation has resulted in relatively low species diversity but comparatively high endemism. The dominant reef-building corals of the TEP are the Pocillopora corals, a ubiquitous Indo-Pacific genus commonly regarded as inferior reef-builder. In addition to being the dominant reef-builders in the TEP,...
متن کاملResponses of the Metabolism of the Larvae of Pocillopora damicornis to Ocean Acidification and Warming
Ocean acidification and warming are expected to threaten the persistence of tropical coral reef ecosystems. As coral reefs face multiple stressors, the distribution and abundance of corals will depend on the successful dispersal and settlement of coral larvae under changing environmental conditions. To explore this scenario, we used metabolic rate, at holobiont and molecular levels, as an index...
متن کاملMixed asexual and sexual reproduction in the Indo-Pacific reef coral Pocillopora damicornis
Pocillopora damicornis is one of the best studied reef-building corals, yet it's somewhat unique reproductive strategy remains poorly understood. Genetic studies indicate that P. damicornis larvae are produced almost exclusively parthenogenetically, and yet population genetic surveys suggest frequent sexual reproduction. Using microsatellite data from over 580 larvae from 13 colonies, we demons...
متن کاملCalcification and growth rate recovery of the reef-building Pocillopora species in the northeast tropical Pacific following an ENSO disturbance
Pocilloporids are one of the major reef-building corals in the eastern tropical Pacific (ETP) and also the most affected by thermal stress events, mainly those associated with El Niño/Southern Oscillation (ENSO) periods. To date, coral growth parameters have been poorly reported in Pocillopora species in the northeastern region of the tropical Pacific. Monthly and annual growth rates of the thr...
متن کاملClimatic and biotic thresholds of coral-reef shutdown
Climate change is now the leading cause of coral-reef degradation and is altering the adaptive landscape of coral populations1,2. Increasing sea temperatures and declining carbonate saturation states are inhibiting short-term rates of coral calcification, carbonate precipitation and submarine cementation3–5. A critical challenge to coral-reef conservation is understanding the mechanisms by whic...
متن کامل